
METHODOLOGIES 

CAUSALITY MEASURES 

 

GrangerCausalityIndex (GCI) 

The standard Granger causality index (GCI) is estimated based on VARs (Granger, 1969). In the bivariate 

case, the variable 𝑋2 Granger causes 𝑋1, if the knowledge of past values of 𝑋2 significantly improves the 

prediction of 𝑋1. A bivariate autoregressive model of order 𝑃 (unrestricted / full model) is fitted to the time 

series {𝑥1𝑡}: 

𝑥1𝑡 =  𝛼1𝑗𝑥2𝑡−𝑗  𝑃
𝑗=1 +  𝛼2𝑗𝑥1𝑡−𝑗

𝑃
𝑗=1 + 𝜀1𝑡 , 

where 𝛼1𝑗 ,𝛼2𝑗 are the coefficients of the VAR model and 𝜀1𝑡  the residuals from fitting the model.The 

restricted model is similarly defined (but without variable 𝑋2). If the variance 𝑠𝑈
2  of the residuals of the 

unrestricted model is significantly lower than the corresponding variance 𝑠𝑅
2 of the restricted model, then 𝑋2 

Granger causes 𝑋1. The magnitude of the effect of 𝑋2 on 𝑋1 is given by the Granger Causality Index (GCI) 

𝐺𝐶𝐼𝑋2→𝑋1
= ln

𝑣𝑎𝑟 (𝑠𝑅
2 )

𝑣𝑎𝑟 (𝑠𝑈
2 )

. 

Reference 

C.W.J. Granger. Investigating causal relations by econometric models and cross-spectral 

methods. Econometrica, 37(3):424-438, 1969. 

 

ConditionalGrangercausality Index (CGCI)  

The Conditional Granger Causality Index (CGCI) extends GCI to themultivariate case(Geweke, 1982). 

Considering 𝐾 variables in total, with 𝑋1 the response variable and 𝑋2 the driving one,additional 𝐾 −

2conditioning variables are included in the models, denoted as𝑍 =  𝑍1 ,𝑍2 , . . ,𝑍𝐾−2 . The CGCI is given as: 
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𝐶𝐺𝐶𝐼𝑋2→𝑋1|𝑍 = ln
𝑣𝑎𝑟(𝑠𝑅

2)

𝑣𝑎𝑟(𝑠𝑈
2 )

. 

Reference 

J. Geweke. Measurement of linear dependence and feedback between multiple time series. Journal of the 

American Statistical Association, 77(378):304–313, 1982. 

 

PartiallyConditionedGrangercausality (PCGC)  

The PartiallyConditionedGrangercausality (PCGC) is an extension of the ConditionalGrangerCausality 

Index(CGCI) (Marinazzoet al., 2012). It quantifies the direct causality and is based on variable selection to 

reduce the dimensionality. A limited subset of the most informative variables for the driving one is set as 

the conditioning variables’ ensemble using information gain as a criterion.  

Reference 

D. Marinazzo, M. Pellicoro, and S. Stramaglia. Causal information approach to partial conditioning in 

multivariate data sets. Computational and Mathematical Methods in Medicine, No. 2012, 2012. 

 

Partial Granger Causality (PGC)  

The Partial Granger Causality (PGC) is a multivariate direct causality measure defined again on VARs but 

inspired by the definition of partial correlation(Guo et al., 2008). It is an extension of the standard Granger 

causality test appropriate for cases with latent and exogenous variables. The idea of PGC stems from the 

fact that the influence of exogenous and/or latent variables on a system will be reflected by correlations 

among the residuals of a VAR model of the measured variables. 

We consider again the unrestricted and restricted multivariate VARs and denote the corresponding residual 

covariance matrixes of the two models as 𝛴 and 𝜌. In case of three variables 𝛸1 ,𝛸2 ,𝛸3, the PGC is given as 
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𝑃𝐺𝐶𝛸2→𝛸1|𝛸3
= 𝑙𝑛

𝜌11 − 𝜌12𝜌22
−1𝜌21

𝛴11 − 𝛴13𝛴33
−1𝛴31

. 

Note that 𝛴11 = 𝑣𝑎𝑟(𝑠1𝑈
2 )and 𝜌11 = 𝑣𝑎𝑟(𝑠1𝑅

2 ).PGC is an improved estimation of the CGCI when the 

residuals of the VAR models are correlated. Otherwise, it is identical to the CGCI. 

Reference 

S. Guo, A.K. Seth, K.M. Kendrick, C. Zhou, & J. Feng. Partial Granger causality-eliminating exogenous 

inputs and latent variables. Journal of neuroscience methods, 172(1):79-93, 2008. 

 

Restricted ConditionalGrangerCausality Index (CGCI)  

The Restricted Conditional Granger Causality Index (RCGCI) is an extension of CGCI using 

dimension reduction to face the curse of dimensionality (Siggiridou&Kugiumtzis, 2016).  For its 

computation, the VAR is restricted by a modified backward-in-time selection (mBTS) method. 

Autoregressive models are again fitted to the data, such as for CGCI, however the selected lagged variables 

are different for each variable, instead of having all lagged variables for a common maximum order for all 

variables, as in the definition of CGCI. To determine the suitable subset of lagged variables for each 

variable, an inherent property of time series is exploited, i.e. the fact that the dependence structure is closely 

related to the temporal order of the variables. The RCGCI is computed similarly to CGCI however makes 

use of the mBTS algorithm and therefore the determined autoregressive models have much fewer lagged 

terms. RCGCI is particularly effective in case of many observed variables and relatively short time series. 

Specifically, we consider the vector 𝒘1 that includes the optimal lagged terms for predicting 𝑋1 

extracted from mBTS method selected from the original ensemble of lagged terms of all the observed 

variables {𝑋1,𝑡−1,𝑋1,𝑡−2 ,… ,𝑋1,𝑡−𝑝𝑚𝑎𝑥 ,… ,𝑋𝐾,𝑡−1 ,… ,𝑋𝐾,𝑡−𝑝𝑚𝑎𝑥 }, where 𝑝𝑚𝑎𝑥  is the largest lag considered 

for each variable. Then, we check whether any lagged variable of 𝑋2 enters in vector 𝒘1. If not, then 

RCGCI𝑋2→𝑋1
= 0.  If there are lagged terms of 𝑋2within𝒘1, then we consider the unrestricted VAR model for 



PoCoTe D2.1 

 

Page 4 of 15 

 

𝑋1 based on the lagged terms of 𝒘1. The corresponding restricted model for 𝑋1is formed by excluding all 

lagged terms of variable 𝑋2. In this case, RCGCI from 𝑋2 to 𝑋1is given similarly to CGCI, i.e., is the 

logarithm of the ratio of the variances of the residuals of the two models. 

 

Transferentropy (TE) 

Transferentropy is a bivariate causality measure from information theory that defines Granger causality 

based on entropy instead of VARs(Schreiber, 2000). It is model free and indicates both linear and nonlinear 

causal effects.  

Computation of TE involves the formulation of uniformly spaced embedding vectors from each variable, 

e.g. for 𝑋1:𝒙1𝑡 = [𝑥1𝑡 ,𝑥1𝑡−𝜏 ,… , 𝑥1𝑡−(𝑚−1)𝜏]′, where 𝑚 is the embedding dimension and 𝜏is the time lag. 

TE appreciates the effect of variable 𝑋2 (driving variable) on𝑋1(response variable) by quantifying the 

improvement of the prediction of the future of 𝑋1in time 𝑡 + 1, 𝑥1𝑡+1, when using additional information 

from the past of 𝑋2 instead of utilizing only the past of 𝑋1 

ΤΕX2→X1
= 𝐻 𝑥1𝑡+1 𝒙1𝑡 − 𝐻 𝑥1𝑡+1 𝒙1𝑡 ,𝒙2𝑡 , 

where𝐻(𝑥)istheShannon entropy of a discrete variable𝑋:𝐻 𝑥 = −Σ𝑝 𝑥 𝑙n𝑝(𝑥). 

The computation of TE involves joint and marginal probability functions. It has been proposed as a 

convenient method the k-nearest neighbors’ technique (Kraskovet al., 2004)which is proved to be stable 

and efficient, especially when interested to capture possible nonlinear causal effects. 

References 

A. Kraskov, H. Stogbauer, and P. Grassberger. Estimating mutual information. Physical review E, 

69(6):066138, 2004. 

T. Schreiber. Measuring information transfer. Physical Review Letters, 85(2):461, 2000. 
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Partialtransferentropy (PTE)  

Partialtransferentropyis the multivariate extension of TE that indicates only the direct causal effects in case 

of 𝐾 variables 

PΤΕX2→X1|X3 ,…,X𝐾 = 𝐻 𝑥1𝑡+1 𝒙1𝑡 ,𝒙3𝑡 ,… . ,𝒙𝐾𝑡 − 𝐻 𝑥1𝑡+1 𝒙1𝑡 ,𝒙2𝑡 ,𝒙3𝑡 ,… ,𝒙𝐾𝑡 . 

The k-nearest neighbors’ estimator is used (Papana et al., 2012). 

Reference 

A. Papana, D. Kugiumtzis, and P.G. Larsson. Detection of direct causal effects and application in the 

analysis of electroencephalograms from patients with epilepsy. International Journal of Bifurcation and 

Chaos, 22(9):1250222, 2012. 

 

Partial Transfer Entropy variants (PTE variants) 

The calculation of the partial entropy transfer (PTE) is based on the estimation of marginal and joint 

probability distributions. The larger the number of variables of a multivariate system, the greater the 

computational complexity of estimating the above probability functions while the accuracy of the 

estimation decreases. Taking into consideration this remark and regardless of the above main simulation 

study, some variants of the PTE areintroducedbased on variable selectionin order to address this issue.  

To overcome the large-dimensional problem that occurs when calculating the PTE, one can reduce the 

number of conditioning variables based on a suitable criterion.The PTE variants consider a subset of the 

original conditioning variables of PTE with respect to connectivity pattern of each system (Papana et al., 

2020). Finding the optimal subset of conditioning variables is based on the connectivity of the variablesand 

in particular,the following two correlation measures are used:  

i. linear correlation coefficient𝑟 = 𝑐𝑜𝑟𝑟 𝑋,𝑌 =
𝑐𝑜𝑣 𝑋,𝑌 

𝜎𝑋𝜎Υ
 

ii. mutual information Ι = I X, Y = 𝐻 𝑋 − 𝐻 𝑋 𝑌  
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We examine how informative are the conditioning variables in relation to the driving variable and / or the 

response variable. Based on the above consideration, we define the following PTE variants in terms of the 

formulation of the subset of conditioning variables: 

1A: Choose the most correlated variables to the driving one based on the linear correlation 

1B: Choose the most correlated variables to the driving one based on mutual information 

2A: Choose the least correlated variables to the driving one based on linear correlation 

2B: Choose the least correlated variables to the driving one based on mutual information 

3A: Choose the most correlated variables to the response one based on the linear correlation 

3B: Choose the most correlated variables to the responseone based on mutual information 

4A: Choose the least correlated variables to the response one based on linear correlation 

4B: Choose the least correlated variables to the response one based on mutual information 

5A: Choose the most correlated variables to the driving one based on random forest 

5B: Choose the most correlated variables to the response one based on random forest 

5C: Choose the most correlated variables to the driving and response one based on random forest 

Inamultivariatesystemof𝐾variables, letusdenote𝛧asubsetof{𝑋3 ,… ,𝑋𝐾}thatincludes𝑛𝑐conditioningvariables 

and has emerged from one of the above considered cases. Then the PTE variant is defined 

asPΤΕ𝑋2→𝑋1|𝜡.Depending on the estimated correlations, a smaller number of binding variables can be 

chosen than given 𝑛𝑐.If there are no correlated variables, then the binary variable TE is calculated. 

Reference 

Papana, A., Papana-Dagiasis, A., &Siggiridou, E. Shortcomings of transfer entropy and partial transfer 

entropy: Extending them to escape the curse of dimensionality. International Journal of Bifurcation and 

Chaos, 30(16), 2050250, 2020. 
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Mutual information on mixed embedding (ΜΙΜΕ) 

Mutual information on mixed embedding (ΜΙΜΕ) is derived directly from a mixed embedding scheme 

based on the conditional mutual information criterion (Vlachos & Kugiumtzis, 2010). Therefore, it is a 

bivariate measure using dimension reduction.  

An optimized mixed embedding vector of past terms fromtheobserved variables is formed, which 

best explains the future of the response variable.The terms chosen by each variable are not necessarily 

uniformly spaced. The mixed embedding vector 𝒘𝑡 = [𝒘𝑡
𝑋1 ,𝒘𝑡

𝑋2 ]with varying delays from the variables 𝑋1 

and 𝑋2 is progressively formed regarding a conditional mutual information (CMI) criterion. The maximum 

lag for searching in 𝑋1, 𝑋2 is denoted as 𝐿𝑚𝑎𝑥  and is the only free parameter of this measure. However, it 

has been shown that MIME is not affected by 𝐿𝑚𝑎𝑥 , if it is sufficiently large. Setting 𝐿𝑚𝑎𝑥  equal to a very 

large number may only affect the computational time of the measure and not its performance. Starting by an 

empty vector 𝒘𝑡
0, a new vector 𝒘𝑡

𝑗
 is formed at each step 𝑗, by adding a component 𝑤𝑡

𝑗
 (from 𝑋1 or 𝑋2), so 

that the future of the response variable 𝑋1, 𝑥1𝑡+1, is best explained: 

𝑤𝑡
𝑗

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑤𝑡
𝑗 {𝐼(𝑥1𝑡+1;  𝒘𝑡

𝑗
|𝒘𝑡

𝑗−1
}, 

where 𝐼(𝑋;𝑌|𝑍) denotes the conditional mutual information of 𝑋 and 𝑌 conditioning on 𝑍. 

The stopping criterion for determining the mixed embedding vector is based on an adjusted 

threshold. Specifically, a significance test is performed for the CMI of the new component selected as best. 

For the significance test, an ensemble of 𝑛𝑠𝑢𝑟surrogate time series is formed, and the test decision is made 

at a given significance level (we set 𝑎 = 0.05). The surrogates are obtained using random permutations of 

the time indices of thecandidate lag variable and independent random permutations of the lagged variables 

already selected.To decide on a significant CMI, the p-value is obtained by the rank ordering the original 

and surrogate CMI values,applying the suggested correction of Yu& Huang (2001) 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = (1 − 𝑟0 − 0.326)/(𝑛𝑠𝑢𝑟 + 1 + 0.348) 
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(one-sided test), where 𝑟0 is the rank of the original CMI value. 

The MIME is defined as 

MIME𝑋2→𝑋1
=
𝐼(𝑥1𝑡+1;  𝒘𝑡

𝑋1 |𝒘𝑡
𝑋2 )

𝐼(𝑥1𝑡+1;𝒘𝑡)
. 

Probability densitiesare computed using the k-nearestneighbors’estimator (KNN –Kraskovet al., 2004). If 

there is no causal effect from 𝑋2 to 𝑋1, then MIME𝑋2→𝑋1
 is zero, otherwise is positive. 

Reference 

A. Kraskov, H. Stogbauer, and P. Grassberger. Estimating mutual information. Physical review E, 

69(6):066138, 2004. 

I. Vlachos, and D. Kugiumtzis. Nonuniform state-space reconstruction and coupling detection. Physical 

Review E, 82(1): 016207, 2010. 

G.H. Yu, and C.C. Huang. A distribution free plotting position. Stochastic Environmental Research and 

Risk Assessment, 15(6):462-476, 2001. 

 

Partial mutual information on mixed embedding (PMIME) 

Partial mutual information on mixed embedding (PMIME) extends MIME to the multivariate case 

considering 𝐾 variables in total (Kugiumtzis, 2013). The NUE scheme is utilized to reduce dimensionality. 

A mixed embedding vector is formed by the inclusion of properly selected lagged terms from all the 

observed variables based on the CMI criterion, i.e., we form𝒘𝑡 = [𝒘𝑡
𝑋1 ,𝒘𝑡

𝑋2 ,𝒘𝑡
𝑍]. For a 

predefinedmaximum lag 𝐿𝑚𝑎𝑥 , the ensemble of lagged terms for forming 𝒘𝑡  is  

𝐵 = {𝑥1𝑡 ,𝑥1𝑡−1 ,… , 𝑥1𝑡−𝐿𝑚𝑎𝑥 , 𝑥2𝑡 ,𝑥2𝑡−1 ,… , 𝑥2𝑡−𝐿𝑚𝑎𝑥 ,… . . }. 

The PMIME is equal to: 
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PMIME𝑋2→𝑋1|𝑍
=
𝐼(𝑥1𝑡+1;  𝒘𝑡

𝑋1 |𝒘𝑡
𝑋2 ,𝒘𝑡

𝑍)

𝐼(𝑥1𝑡+1;𝒘𝑡)
. 

As for MIME, positive values of PMIME indicate the existence of causality, otherwise the measure is equal 

to zero. Surrogates are utilized in the stopping criterion to identify 𝒘𝑡 . 

Reference 

D. Kugiumtzis. Direct-coupling information measure from nonuniform embedding. Physical Review 

E, 87(6):062918, 2013. 

 

Partial transfer entropy with non-uniform embedding (PTENUE) 

Partial transfer entropy with non-uniform embedding (PTEknnNUE) is again defined using the NUE 

scheme, similarly to MIME / PMIME (Montalto et al., 2014).Its’ estimation procedure is like PMIME’s. 

However, the probability densities arecomputedonadifferent k-nearestneighbors’estimator (KNN), again 

introduced inKraskovet al. (2004). The stopping criterion relies on randomization of the driving variable. 

The decision for a significant CMI is made by comparing the CMI of the original data with the 1 − 𝑎 

percentile of the surrogate CMI values. 

PTEknnNUE measures the direct effect of 𝑋2 on 𝑋1 in the presence of the "appropriate" past terms of the 

remaining variables: 

PTEknnNUE𝑋2→𝑋1|𝑍
= 𝐼(𝑥1𝑡+1;  𝒘𝑡

𝑋2 |𝒘𝑡). 

The measure is zero in case of no causality, otherwise is positive. 

Reference 

A. Kraskov, H. Stogbauer, and P. Grassberger. Estimating mutual information. Physical review E, 

69(6):066138, 2004. 
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A. Montalto, L. Faes, & D. Marinazzo. MuTE: a MATLAB toolbox to compare established and novel 

estimators of the multivariate transfer entropy. PloS one, 9(10):e109462, 2014. 

 

Nonlinear RCGCI (NRCGCI) 

The linear measure Restricted Conditional Granger Causality Index (RCGCI) is extended to be able to 

capture also nonlinear causal effects within the framework of PoCoTe project. The nonlinear RCGCI 

(NRCGCI) in introduced to overcome the limitation of RCGCI to capture only linear couplings. Its’ 

estimation procedure isimplementedin the basis of the RCGCI. The optimal mixed vector 𝒘1 for predicting 

variable 𝑋1 is defined based on mBTS algorithm extracted from the original set of lagged terms that 

includes also nonlinear terms of second order, i.e.,products of lagged terms and lagged terms in the second 

power. Thus, the lagged terms of the unrestricted model are chosen from the following set  

𝒘 = {  X𝑖,𝑡−𝑝 ,    X𝑚 ,𝑡−𝑝𝑚𝑋𝑛 ,𝑡−𝑝𝑛
𝐾
𝑛=1

𝐾
𝑚=1

𝑝𝑚𝑎𝑥
𝑝𝑛=1

𝑝𝑚𝑎𝑥
𝑝𝑚 =1

𝐾
𝑖=1

𝑝max
𝑝=1 }. 

In the restricted model, we exclude all possible lagged terms including 𝑋2, i.e. linear terms, squares of 

lagged terms of 𝑋2 and products of lagged terms of 𝑋2 with any other variable. 

For example, let us consider the case of 𝐾=3 variables and 𝑝max = 2. Then, we determine 𝒘1 by 

choosing lagged terms from the set 

𝒘 = {𝑋1,𝑡−1,𝑋2,𝑡−1 ,𝑋3,𝑡−1, 

𝑋1,𝑡−2 ,𝑋2,𝑡−2 ,𝑋3,𝑡−2,𝑋1,𝑡−1
2 ,𝑋2,𝑡−1

2 ,𝑋3,𝑡−1
2 ,𝑋1,𝑡−2

2 ,𝑋2,𝑡−2
2 ,𝑋3,𝑡−2

2 ,𝑋1,𝑡−1*𝑋2,𝑡−1, 𝑋1,𝑡−1*𝑋3,𝑡−1 ,   𝑋2,𝑡−1 ∗

𝑋3,𝑡−1, 𝑋1,𝑡−2*𝑋2,𝑡−1, 𝑋1,𝑡−2*𝑋3,𝑡−1 ,𝑋2,𝑡−2 ∗ 𝑋3,𝑡−1, 𝑋1,𝑡−1*𝑋2,𝑡−2, 𝑋1,𝑡−1*𝑋3,𝑡−2,𝑋2,𝑡−1 ∗ 𝑋3,𝑡−2}. 

To identify 𝒘1,i.e.the set of lagged variables for the unrestricted model, we apply the mBTS method in 𝒘. 

To form the restricted model, we exclude from 𝒘 any presence of the driving variable 𝑋2 (𝒘𝒓): 



PoCoTe D2.1 

 

Page 11 of 15 

 

𝒘𝑟 = {𝑋1,𝑡−1 ,𝑋2,𝑡−1 ,𝑋3,𝑡−1, 𝑋1,𝑡−2 ,𝑋2,𝑡−2 ,𝑋3,𝑡−2,𝑋1,𝑡−1
2 , 𝑋2,𝑡−1

2 , 𝑋3,𝑡−1
2 , 𝑋1,𝑡−2

2 , 𝑋2,𝑡−2
2 , 

𝑋3,𝑡−2
2 ,𝑋1,𝑡−1*𝑋2,𝑡−1, 𝑋1,𝑡−1*𝑋3,𝑡−1 ,   𝑋2,𝑡−1 ∗ 𝑋3,𝑡−1, 𝑋1,𝑡−2*𝑋2,𝑡−1, 𝑋1,𝑡−2*𝑋3,𝑡−1 ,𝑋2,𝑡−2 ∗ 𝑋3,𝑡−1, 

𝑋1,𝑡−1*𝑋2,𝑡−2, 𝑋1,𝑡−1*𝑋3,𝑡−2 ,𝑋2,𝑡−1 ∗ 𝑋3,𝑡−2}. 

and we apply mBTS algorithm in 𝒘𝑟 . So, the mBTS method is used to define the optimal lagged vector for 

both the restricted and unrestricted model. In each step of mBTS method, the lagged variable with the least 

value, based on Bayesian Information Criteria (BIC – Schwarz, 1978), is randomized 100 times and is 

selected if the initial value of BIC lies inin the tails of distribution of the 100 BIC values (estimated from 

the 100 surrogate time series).  

References 

G. Schwarz. Estimating the dimension of a model. The Annals of Atatistics, 6(2): 461–464, 1978. 

 

 

Nonlinear Fast-Approximate Causal Discovery Algorithm (NLFACDA) 

Hlinka &Kořenek (2020) introduced the Fast-Approximate Causal Discovery Algorithm for causality 

detection, which is based on conditional testing. It is a hybrid method that takes into consideration the 

estimation procedure of PMIME and of Runge’s algorithm (Runge, 2012;Runge et al., 2019). 

Let us consider a random process {𝑿𝑡|𝑡𝜖ℤ}, where𝑿𝑡is a multivariate random variable 

𝑿𝑡 = (𝑋𝑡
1 ,𝑋𝑡

2 ,… ,𝑋𝑡
𝐾)T , with the random variable 𝑋𝑡

𝑖  indicating the state of element 𝑖 at the time 𝑡. Τhe 

previous states of the system are expressed by𝑿𝑡
− = (𝑿𝑡−1,… ,𝑿𝑡−𝜏𝑚𝑎𝑥 ) while for each variable is defined 

as 𝑋𝑡
𝑖− = (𝑋𝑡−1

𝑖 ,… ,𝑋𝑡−𝜏𝑚𝑎𝑥
𝑖 ). To quantify the causal effect of the variable 𝑋𝑡−𝜏

𝑗
 on the variable 𝑋𝑡

𝑖  

conditioned on all other elements of the system 𝑿𝑡 , the conditional mutual information 

𝐼 𝑋𝑡
𝑖 ;𝑋𝑡−𝜏

𝑗
 𝑿𝑡

−\𝑋𝑡−𝜏
𝑗
  is used.  
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To face the problem of estimating high-dimensional information functionals, as the above CMI, dimension 

reduction methods are required. FACDA algorithm determines the set of causal parents 𝑁𝑋𝑡
𝑖  which contains 

the elements 𝑋𝑡−𝜏
𝑗

 that have a causal effect on element 𝑋𝑡
𝑖 : 

𝑁𝑋𝑡
𝑖 = {𝑋𝑡−𝜏

𝑗
|𝐼 𝑋𝑡

𝑖 ;𝑋𝑡−𝜏
𝑗
 𝑿𝑡

−\𝑋𝑡−𝜏
𝑗
 > 0 

in three phases.In each step, iteratively includes in the parent set, the link with the strongest conditional 

mutual information, and limits the candidate set to only those links that have significant conditional mutual 

information (conditioned on the already established parents), limiting this way the computational cost of 

each step. 

More detailed, the algorithm starts with an initial phase that generates a set ofcandidate causal 

parents for the target / responsevariable. This is doneiteratively by evaluating the conditional mutual 

information on the already identified candidate parents. In the second phase, the potential candidates are 

removed by iterative testing of their added value (conditional mutual information) with respect its subsets 

of increasing size. Finally, in the last step of the algorithm, additional partial correlation tests are performed 

to decide whether an element should be removed from the set of causal parents. The significanceof CMI is 

assessed based on permutation tests, which does not assume normal distribution and independence of 

samples.  

Reference 

Kořenek, J., & Hlinka, J. Causal network discovery by iterative conditioning: comparison of 

algorithms. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(1), 013117, 2020. 

J. Runge, J. Heitzig, V. Petoukhov, et al. Escaping the curse of dimensionality in estimating multivariate 

transfer entropy. Physical Review Letters, 108(25): 258701, 2012. 

Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., &Sejdinovic, D. Detecting and quantifying causal 

associations in large nonlinear time series datasets. Science Advances, 5(11), eaau4996, 2019. 
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Linear Fast-Approximate Causal Discovery Algorithm (LFACDA) 

The linear version of FACDA, namely denoted as LFACDA, is defined in terms of the partial correlation 

coefficient (Hlinka &Kořenek, 2020). Authors exploit the fact that under the Gaussian hypothesis, an 

estimate of the conditional mutual information 𝐼 𝑋;𝑌 𝑍 can be obtained based on partial 

correlation𝜌(𝛸,𝛶|𝛧): 

𝐼 𝑋;𝑌 𝑍 = −
1

2
log(1 − 𝜌(𝛸,𝛶|𝛧)2), 

Thus,LFACDA is computed on partial correlation instead of conditional mutual information. This way, the 

computational cost is minimal. To further speed up the simulations, significance test for partial correlation 

is assessed by Student’s t-test, instead of considering random permutations. 

Reference 

Kořenek, J., & Hlinka, J. Causal network discovery by iterative conditioning: comparison of 

algorithms. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(1), 013117, 2020. 

 

Low-dimensional approximation searching algorithm for Transfer Entropy (LATE) 

Zhang (2018) introducedan estimator of transfer entropy (TE) based on the non-uniform embedding (NUE) 

scheme that exploits thelow-dimensional approximation algorithms for the estimation of the multivariate 

conditional mutual information (CMI). 

The estimation procedure of LATE is like PMIME’s, however the selection of thelagged terms that form 

the mixed embedding vectors considers sums of low-dimensional CMIs instead of a high-dimensional one. 

Thus, we substitute the relationship regarding 𝑤𝑡
𝑗
 (as given in MIME) by 
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𝑤𝑡
𝑗

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑤𝑡
𝑗  𝐼 𝑥1𝑡+1;  𝑤𝑡

𝑗
 −

2

 𝐵 
 𝐼 𝑤𝑡

𝑗
;  𝑤𝑡

𝑖 

𝑤𝑡
𝑖∈𝐵

−
2

 𝐵 
 𝐼 𝑤𝑡

𝑗
;  𝑤𝑡

𝑖|𝑥1𝑡+1 

𝑤𝑡
𝑖∈𝐵

 . 

After defining the mixed embedding vector 𝒘𝑡 , LATE is expressed as  

LATE𝑋2→𝑋1|𝑍
= 𝐼(𝑥1𝑡+1;  𝒘𝑡

𝑋2 |𝒘𝑡). 

In the termination criteria, the same low-dimensional approximation scheme is considered for the 

computation of the surrogate LATE values. 

Reference 

J. Zhang. Low-dimensional approximation searching strategy for transfer entropy from non-uniform 

embedding. PloS one, 13(3): e0194382, 2018. 

 

Partial Transfer Entropy on Rank Vectors (PTERV) 

The Partial Transfer Entropy on Rank Vectors (PTERV)utilizes rank points instead of the original time 

delayed vectorsof the time series(Kugiumtzis, 2013).From the embedding vectors of each observed time 

series, we form the corresponding rank-points. For example, for the time series {𝑥1𝑡}, 𝑡 = 1, . . ,𝑛, the 

embedding vectors are of the form 𝒙𝟏𝒕 = (𝑥1𝑡 ,𝑥1𝑡−𝜏 ,… , 𝑥1𝑡− 𝑚−1 𝜏)′, where 𝑚 is theembedding dimension 

and 𝜏 is the time delay. The rank-point𝒙 𝟏𝒕 = (𝑟1,… , 𝑟𝑚)′ (𝑟𝑗 𝜖 1,… ,𝑚 , 𝑗 = 1,… ,𝑚) is formed by the ranks 

of the corresponding amplitude values of the embedding vector 𝒙𝟏𝒕when arranged in ascending order. The 

future𝑥1𝑡+1of the response variable𝑋1of one step ahead at time t, is given by the rank𝒙 𝟏𝒕+𝟏of 𝑥1𝑡+1, when 

sorting the observations of the joint vector [𝑥1𝑡+1,𝒙𝟏𝒕]. ThePTERV is defined as 

PTERV𝑋2→𝑋1|𝑍
=  𝐼 𝒙 𝟏𝒕+𝟏;  𝒙 𝟐𝒕 𝒙 𝟏𝒕,𝒛 𝒕 

                                                           =  𝑝(𝒙 𝟏𝒕+𝟏,𝒙 𝟐𝒕,𝒙 𝟏𝒕,𝒛 𝒕)

𝑛−1

𝑡= 𝑚−1 𝜏+1

𝑙𝑜𝑔
𝑝(𝒙 𝟏𝒕+𝟏|𝒙 𝟐𝒕,𝒙 𝟏𝒕, 𝒛 𝒕)

𝑝(𝒙 𝟏𝒕+𝟏|𝒙 𝟏𝒕,𝒛 𝒕)
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where𝐼(∙)denotes the mutual information and 𝑝(∙) the probability mass function. 

Reference 

D. Kugiumtzis. Partial transfer entropy on rank vectors. The European Physical Journal Special 

Topics, 222(2): 401-420, 2013. 

 

 


